Wechsel­wirkung Seeschiff/­Seeschiff­fahrtsstraße - Schiffs­erzeugte Belastung

Die Änderung der tiefgangs- und geschwindigkeitsabhängigen schiffserzeugten Belastung der Schifffahrtsstraßen setzt eine Definition der Kenngrößen (z.B. Schiffswellensystem, Verdrängungsströmung) voraus und erfordert die Kenntnis der funktionellen Abhängigkeiten (z.B. Schiffsgeschwindigkeit und Schiffsbreite, Fahrwasserverhältnisse, Passierabstand). U.a. zeigt Bild 1 schematisch das Schiffswellensystem.

Seit Anfang dieses Jahrhunderts wurde eine Vielzahl analytischer und empirischer Ansätze zur Berechnung der Wechselwirkung von Schiff und Wasserstraße entwickelt. Erste Berechnungen mit hydrodynamisch-numerischen Modellen zeigen im Vergleich zu Ergebnissen aus hydraulischen Maßstabsmodellen Abweichungen, so dass diese numerischen Modelle zur Ermittlung ausbaubedingter Änderungen schiffserzeugter Belastungen in Schifffahrtsstraßen noch nicht als abgesichertes wissenschaftliches Hilfsmittel einzustufen sind. Eine gesicherte, quantitative Prognose schiffserzeugter Belastungen in inhomogenen Wasserstraßen ist derzeit nur auf Basis hydraulischer Modellversuche in einem fachwissenschaftlich abgesicherten Modellmaßstab möglich (Stand der Technik und Wissenschaft).

Bei der BAW Dienststelle Hamburg wurden in den letzten Jahren zur Fragestellung der Wechselwirkung Seeschiff - Seeschifffahrtsstraße sowohl Untersuchungen in hydraulischen Modellen als auch Messungen in der Natur durchgeführt. Nähere Informationen können im BAWiki abgerufen werden.

Definition der Kenngrößen

Bei der Fahrt eines Schiffes durch das Wasser treten infolge der Verdrängungsströmung und den auftretenden Druck- und Wasserspiegeländerungen an Bug, Heck und Schiffslängsseite Wellensysteme unterschiedlicher Periode auf. Das Schiffswellen- und Strömungssystem ist bei Revierfahrt z.B. in einem Ästuar im unterkritischen Geschwindigkeitsbereich (Schiffsgeschwindigkeit kleiner als die Wellenfortschrittsgeschwindigkeit) gekennzeichnet durch:

  • den Bugstau (sB) direkt am Schiffskörper,
  • den Absunk (zA) seitlich am Schiff,
  • die Heckwelle (HP) als Teil des langperiodischen Primärwellensystems,
  • die das Primärwellensystem überlagernden Sekundärwellen (HS),
  • die zeitgleich auftretende Rückstromgeschwindigkeit (vR).

Die Wasserspiegeländerungen in tiefen- und seitenbegrenztem Fahrwasser, wie sich das Wellenbild für einen Betrachter vom Ufer aus darstellt, sind als Seitenansicht und in starker Überhöhung in obiger Skizze erläutert.

Funktionelle Abhängigkeiten

Die von fahrenden Schiffen erzeugten Wasserspiegelschwankungen und Strömungen sind eine Funktion:

  • von Schiffsgeschwindigkeit vS und Passierabstand L
  • der Schiffsabmessungen (Länge l, Breite b, Tiefgang t, eingetauchter Hauptspantquerschnitt AS)
  • vom Gesamtwiderstand des Schiffes (Schiffsform) im Kanal RT,K
  • der Fahrwasserverhältnisse (Wasserspiegel- B und Sohlbreite BS, Wassertiefe h, Querprofilform und -fläche A, Uferform und Böschungsneigung 1 : m)
  • der Strömungsverhältnisse in der Wasserstraße
  • sonstiger Einflüsse wie z.B. Krümmung, Antriebsart, Dichte des Wassers.

Als die wesentlichen Parameter für die schiffserzeugte Belastung von Seeschifffahrtsstraßen haben sich:

  • die Schiffsgeschwindigkeit (vS)
  • der Passierabstand (L) vom Ufer , der den hydraulisch wirksamen Teilquerschnitt (AT) bestimmt,
  • und das Verhältnis von Gesamtwassertiefe zur Tauchtiefe (h/t), mit AT das Teilquerschnittsverhältnis AT / 0,5 AS, herausgestellt.

Vereinfacht lassen sich die physikalischen Vorgänge bei einer Schiffspassage in inhomogenen Wasserstraßen (oder bei außermittiger Fahrt) damit erläutern, dass die Wasserstraße durch das Schiff in zwei Teilquerschnitte AT1 und AT2 getrennt wird, durch die das jeweils halbe Verdrängungsvolumen am Schiff vorbeigeführt wird. Das unterschiedliche Teilquerschnittsverhältnis AT1 / 0,5 AS und AT2 / 0,5 AS bedingt quantitativ ungleiche schiffserzeugte Belastungen an den jeweiligen Uferabschnitten.

Analytische und empirische Ansätze

Traditionelle Verfahren

Während zur Berechnung des Absunks zA im wesentlichen analytische Herleitungen herangezogen werden können (u.a. Krey, 1913; Constantine, 1960; Bouwmeester et al., 1977; Führböter, 1982), sind die Rechenverfahren zur Ermittlung der Wellenhöhe auch anhand von Modellversuchen und/oder Naturmessungen empirisch abgeleitet (u.a. Römisch, 1969). Die kurzperiodischen Sekundärwellen sind zwar in einigen empirischen Ansätzen mit berücksichtigt, als Funktion der beschriebenen Einflussgrößen jedoch nicht im Detail bekannt, da sie in Abhängigkeit von Schiffsgeschwindigkeit und besonders der Schiffsform durch die unterschiedliche Druckverteilung am Schiffskörper entstehen.

Für den unterkritischen Geschwindigkeitsbereich, in dem in der Handelsschiffahrt aus wirtschaftlichen Gründen gefahren wird (etwa vS < 0,9·[g·d]0,5), sind aus dem Schrifttum vereinfacht folgende Zusammenhänge ermittelt:

  • Absunk und Wellenhöhe
    • zA ∼ vSk mit 2 < k <3,5
    • zA ∼ nk mit -1,5 < k < -1; n = A/AS
  • Rückstromgeschwindigkeit
    • vR ∼ vS
    • vR ∼ n-1

Bild 3 zeigt die Bandbreite möglicher Berechnungsergebnisse für die Randbedingungen eines Messquerschnitts an der Unterelbe im Vergleich mit Messwerten aus dem hydraulischen Modell der BAW-DH.

Für die Prognose schiffserzeugter Belastungen in inhomogenen Seeschifffahrtsstraßen sind neben der Wechselwirkung von Schiff zu Wasserstraße bei der Wellen- und Strömungsentstehung des Weiteren Wellenausbreitungsprozesse wie u.a. Refraktion und Shoaling maßgebend, so dass die Einbeziehung dieser physikalischen Vorgänge in die Berechnung (ohne Parametrisierung) erforderlich wird.

Die traditionellen empirischen und analytischen Ansätze können die schiffserzeugten Belastungen durch die seegängige Großschifffahrt auf den großen inhomogenen Seeschifffahrtsstraßen und besonders im Tidegebiet quantitativ nur sehr unzureichend abschätzen. Eine rechnerische Ermittlung zukünftiger Belastungen kann infolgedessen mit diesen Ansätzen nicht erfolgen.

Numerische Berechnungen der Schiffshydrodynamik

Hydrodynamisch-numerische Methoden - Historie

Anfang der 90er Jahre war es auf der Basis der zur Verfügung stehenden Rechner-Hardware sowie bearbeiteter Formen der BOUSSINESQ-Gleichungen (Nwogu 1993)1 möglich, u.a. Schiffswellen in tiefen- und seitenbegrenztem Wasser einschließlich der Wellenausbreitungsprozesse Refraktion, Shoaling, Diffraktion und Reflexion, und auch Strömungsrefraktion sowie Squat und Trimm - vorerst bei unterkritischer Fahrt - zu simulieren. Erste umfangreiche Berechnungen mit dem Programm WAKE2D des National Research Council of Canada - Canadian Hydraulic Center (NRC-CHC 1997)2 wurden im Auftrag der BAW-DH im Rahmen der Untersuchungen an der Unterelbe vorgenommen. Bei den Rechenergebnissen mit WAKE2D war u.a. eine starke Überschätzung der kurzperiodischen Wellen gegenüber den gemessenen Werten aus dem hydraulischen Modell festzustellen.

Andere theoretisch-numerische Verfahren zur Schiffsumströmung, wie z.B. FANKAN (Fluid-Automaten-Netz für Kanäle für völlige Schiffe; Pagel und Führer 1989)3, waren nicht entsprechend entwickelt, die hydrodynamisch optimierte Form von Seeschiffen (u.a. Wulstbug) hinreichend genau zu diskretisieren und verfälschten damit die dynamische Belastung von Seeschifffahrtsstraßen.

Erste Proberechnungen mit einem weiteren Modell namens SHALLOWTANK (Chen 1998)4 (Chen und Uliczka 1999)5 zeigten qualitativ und - bedingt - quantitativ gute Übereinstimmungen mit den Messergebnissen von Versuchsfahrten im hydraulischen Modell der BAW-DH. Das Be-rechnungsverfahren SHALLOWTANK wurde auch schon für die Berechnung schiffserzeugter Belastung bei transkritischen und überkritischen Schiffsgeschwindigkeiten (Chen 1997)6 eingesetzt. Nach weiteren erforderlichen Verifikationsrechnungen sowie nach der Vorlage eines Validierungsdokuments war damals eine rechnerische Bearbeitung von Fragestellungen zur schiffserzeugten Belastung inhomogener Wasserstraßen mit diesem Programm denkbar.

Ende der 90er Jahre war die numerische Bearbeitung (z.B. mit WAKE2D oder SHAL-LOWTANK) noch als Stand der Forschung, aber nicht als wissenschaftlich unstrittiges Hilfsmittel zur Bearbeitung der Fachaufgabe Wechselwirkung Seeschiff - Seeschifffahrtsstraße einzustufen.

Eine gesicherte, quantitative Prognose schiffserzeugter Belastungen in Seeschifffahrtsstraßen war zu der Zeit und ist teils noch gegenwärtig nur auf Basis hydraulischer Modellversuche in einem fachwissenschaftlich abgesicherten Modellmaßstab möglich (Stand der Technik und Wissenschaft).

Literatur

1 Nwogu,O.,Alternative form of Boussinesq equation for nearshore wave propagation, J. of Waterway, Port, Coastel and Ocean Engineering, Vol. 119, No. 6, ASCE, USA, 1993

2 NRC-CHC, Numerical Model Study of Ship-Induced Waves und Currents in the Elbe Estuary, Controlled Technical Report, HYD.CTR-093 (unveröffentlicht), Ottawa, Canada, 1997

3 Pagel, W und Führer, M., Umströmungs- und Widerstandsverhalten völliger Schiffe bei Kanalfahrt. Ergebnisse einer diskreten Modellierung und ihrer experimentellen Verifizierung, Mitteilungen der Forschungsanstalt für Schiffahrt, Wasser- und Grundbau, Schriftenreihe Heft 3, Berlin, 1989

4 Chen.X.-N., Schiffswellenbildung über einer querveränderlichen Topographie, Abstracts - 19. Duisburger Kolloquium Schiffstechnik/ Meerestechnik, Das Schiff für überkritische Fahrt, Duisburg, 1998

5 Chen,X.-N. und Uliczka,K., On Ships in Natural Waterways, Proceedings of Int. Conf. on Coastal Ships and Inland Waterways, The Royal Institution of Naval Architects, Feb. 1999, London 1999

6 Chen,X.-N., Theoretische Grundlagen der Wellenwiderstandseliminierung bei überkritischer Fahrt, besonders durch den Einsatz gekrümmter Katamarane, Proceedings - 18. Duisburger Kolloquium Schiffstechnik/Meerestechnik, Das Schiff in begrenzten Gewässern, Duisburg, 1997

Wasserbauliches Versuchswesen