Interaction seagoing ship / tidal fairway: ship dynamics

The following text reduces the meaning of "dynamic behaviour" to the vertical movements of the ship (squat and trim) with the effects in terms of vessel size, ship speed and bed structures.

Squat refers to the way the moving ship is lowered in the primary wave system generated by the ship itself. Trim is the way the ship turns around the pitch axis and is influenced among others by certain ship parameters and the ship speed. The purpose of the studies is to provide the WSV with the squat and trim parameters related to speed, water level and draught for determining the fairway depths for pending upgrading projects. The model studies are divided into three sub-projects:

Selected results of the extensive test series are presented under the above numbers. Picture 1 gives and impression of the test facility and the size of the model ships.

The results of the studies under 1 and 2 were published in March 2001 (Uliczka/Flügge, 2001) and in September and December 2001 (Flügge/Uliczka, 2001). Results of the studies under 3 were published in January 2004 (Uliczka/Kondziella/Flügge, 2004) and in 2006 (Uliczka/ Kondziella, 2006).

The increasing sizes of seagoing ships and the navigability analyses that thus have to be done on tidal estuaries mean that the task of investigating the interaction between a seagoing ship and the tidal fairway has required, among other things, ongoing research into the dynamics of a ship as it passes approach channels in respect of the physical bases for the “tool” of ship handling simulation. This field of research has thus been enhanced with the addition of two sub-projects – the interaction between ship and bank (Bernoulli or bank effect) and that between two ships – together with the “vertical” dynamics of squat and trim (see above). As well as the parameters of ship-generated water level deflection and current, which have always been required, and the speed-dependent squat and trim, the sub-projects also determine the speed-dependent forces and torques acting laterally on the ship.

  • The „bank-effect“ sub-project determined the interaction between seagoing ships and various embankments by determining distance- and gradient-dependent transverse forces and yaw torques in a physical model test.
  • The ongoing “ship/ship interaction” sub-project is working on calculating the speed-dependent transverse forces and yaw torques as well as the dynamic squat and trim when exceptionally large container ships meet depending on their clearance and draught and the water level. Both physical model tests(EFD)1 and hydrodynamic-numerical calculations (CFD)2 are being undertaken.
  • The ship-generated deflections in the water level (ship waves) and currents, which are to be determined at the same time as the other parameters, enable a complete picture to be painted of the physical processes occurring as the ships pass through the channel.

The sub-projects mainly used and continue to use the hydraulic scale test method in accordance with the state of the art in order to detect ship dynamics data for the large vessels as well as to generate underlying data for the ship handling simulation and validation data for further developing hydrodynamic-numerical methods.

1EFD: Experimental Fluid Dynamics
2CFD: Computational Fluid Dynamics

Literatur

Uliczka, K. und Flügge, G., Squat-Untersuchungen für sehr große Postpanmax-Containerschiffe, Tagungsband HTG-Sprechtag des FA Seeschifffahrtsstraßen, Hafen und Schiff, Hamburg, 27. März 2001

Flügge, G. und Uliczka, K., Dynamisches Fahrverhalten und Wechselwirkungen mit der Fahrrinnensohle von sehr großen Containerschiffen unter extremen Flachwasserbedingungen, Tagungsband HTG-Kongress Häfen & Wasserstraßen, Hamburg, September 2001

Flügge, G. und Uliczka, K., Dynamisches Fahrverhalten und Wechselwirkungen mit der Fahrrinnensohle von sehr großen Containerschiffen unter extremen Flachwasserbedingungen (mit weiteren Ergebnissen), HANSA 138. Jhrg. Dezember 2001

Uliczka, K., Kondziella, B. und Flügge, G., Dynamisches Fahrverhalten sehr großer Containerschiffe in seitlich begrenztem extremen Flachwasser, HANSA 141. Jhrg. Januar 2004

Uliczka, K. und Kondziella, B., Dynamic response of very large containerships in extremly shallow water, Proceedings of the 31st PIANC Congress, Estoril, Spanien, 2006

Uliczka, K., Seeschiffe auf Seeschifffahrtsstraßen am Beispiel der Unter und Außenelbe. In: Hamburg – die Elbe und das Wasser sowie weitere wasserhistorische Beiträge. Schriften der DWhG Band 13, S. 97-112, Siegburg, 2009

Uliczka, K., Kondziella, B., Research on ship dynamics on large containerships in confined fairways. International Conference on Ship Manoeuvring in Shallow and Confined Water – Bank-Effects - Antwerp. In: Conference Proceedings of RINA, Ghent University, FHR, RINA, London, 2009

Briggs, M. J., Vantorre, M., Uliczka, K. und Debaillon, P., Prediction of Squat for Underkeel Clearance. In: Handbook of Coastal and Ocean Engineering, World Scientific Publishing Co. Pte. Ltd., Singapore, 2010

Uliczka, K., Böttner, C-U. und Carstens, D., Head-on traffic at the approach channel to the Port of Hamburg. 3rd International Conference on Ship Manoeuvring in Shallow and Confined Water – Ships Behaviour in Locks - Ghent. In: Conference Proceedings of RINA, Ghent University, FHR, RINA London, 2013

Uliczka, K., Wasserbauliche Modellversuche zur Wechselwirkung Seeschiff / Seeschifffahrtsstraße. In: 44. Internationales Wasserbau-Symposium Aachen 2014, RWTH Aachen, IWW, Achen, 2014

Gourly, T.P., Ha, J.H., Mucha, P. und Uliczka, K., Sinkage and Trim of Modern Container Ships in Shallow Water. In: Proceedings, Australasian Coasts & Ports Conference 2015, Auckland, New Zealand, 2015

Hydraulic Modelling